

Wyspa Plakatowa Stowarzyszenia ProCAx

IV Międzynarodowe Targi WIRTOTECHNOLOGIA 2011 6-9 października 2011, Sosnowiec, www.wirtotechnologia.pl

WIRTOTECHNOLOGIA

Autorzy: inż Michał Szcześniak, inż. Piotr Mioduszewski dr inż. Radosław Patyk e-mail:, mieteksszczesniak@wp.pl Instytucja: Politechnika Koszalińska, Katedra Mechaniki Technicznej i Wytrzymałości Materiałów

Tytuł plakatu: Zastosowanie metod komputerowych do projektowania specjalnych elementów nagniatających

Streszczenie:

Jedną z metod na odpowiednie przygotowanie powierzchni pod proces nagniatania jest wygniatanie regularnych trójkątnych nierówności. Do wygniatania używa się najczęściej głowice które posiadają trzy rolki wygniatające. Odpowiednie zaprojektowanie tych rolek w znaczącym stopniu może poprawić jakość odwzorowania wygniatanych nierówności, co w dalszym procesie technologicznym przyczynia się do poprawienia jakości warstwy wierzchniej. W celu zaprojektowania odpowiednich rolek wygniatających zostały przeprowadzona analizy numeryczne w programie Ansys/Ls-dyna a następnie w oparciu o wyniki symulacji został stworzony obiekt 3D.

Analiza numeryczna procesu wygniatania trójkątnych nierówności

Pierwszym etapem projektu była analiza numeryczna która została przeprowadzona dla kątów pochylenia ściany bocznej nierówności z zakresu do 15 do 20 stopni. W symulacji przyjęto przestrzenny stan naprężeń i płaski stan odkształceń. W tym celu wyodrębniono myślowo elementarne głębokości dl, zarówno w przedmiocie obrabianym jak i w narzędziu. Przyjęcie tych uproszczeń powoduje ze nie uwzględnia sie płynięcia materiału przed i za narzędziem w kierunku obwodowym. W przedstawionym schemacie (rys.1), procesu wygniatania trójkątnych nierówności, występują trzy rolki. Każda z nich wygniata 1/3 zakładanej objętości trójkątnej nierówności, natomiast w analizie numerycznej zastosowano jedno narzędzie, które w swej budowie ma trzy kliny które wygniatają po 1/3 objętości wygniatanej nierówności (rys. 2). Narzędzie zamodelowano jako idealnie sztywne

NNN

sztywne.

Rys. 1 Schemat wygniatania trójkątnych nierówności

Rys. 2 Schemat narzędzia przyjętego do symulacji

Wyniki analizy numerycznej

Symulacje wygniatania trójkątnych nierówności wykonane zostały dla kątów β (rys. 3) wynoszących odpowiednio 20°, 19°, 18°, 17°, 16°, 15°. Wysokość H (rys 3) zmieniała sie w zależności od wygniatanego kąta. Dla każdego kąta zostały wygniecione cztery nierówności. Następnie dla każdej z tych czterech nierówności został określony kąt β i wysokość H, wyniki te zostały uśrednione. Tabela 3 przedstawia uzyskany średni kąt β i wysokość H dla każdego z kątów. Na podstawie otrzymanych wyników został sporządzony wykres zależności obliczonej różnicy $\Delta\beta$ a zakładanym kątem β (rys. 4)

	Zestawier	nie wynikóv	v			
Zakładany kąt wygniatanej nierówności β [°]	20	19	18	17	16	15
Uzyskany kąt wygniatanej nierówności β' [°]	17,49	16,88	15,96	15,12	14,13	13,26
Różnica miedzy zakładanym kątem a uzyskanym Δβ [°]	2,51	2,12	2,04	1,88	1,87	1,74
Zakładana wysokość wygniatanej nierówności H [mm]	0,51	0,5	0,48	0,47	0,46	0,44
Uzyskana wysokość wygniatanej nierówności H' [mm]	0,44	0,44	0,43	0,42	0,4	0,39
Różnica miedzy zakładaną wysokością a uzyskaną ∆H [mm]	0,07	0,06	0,05	0,05	0,06	0,05

Rys. 3 Widok trójkątnej nierówności

Rys. 4 Wykres zależności między obliczona różnicą $\Delta\beta$ a zakładanym kątem β

Stowarzys

Z otrzymanych wyników wynika, że kąt uzyskany podczas wygniatani różni sie w znaczącym stopniu od kąta wynikającego z geometrii narzędzia. Przyczyną tego jest między innymi odsprężynowanie materiału a także trudność w wypełnieniu objętości między dwoma pierścieniami kalibrującymi, co jest bezpośrednio przyczyną uzyskiwania mniejszej wysokości wygniatanej trójkątnej nierówności. Dzięki przedstawionemu wykresowi (rys. 4) można przeprowadzić weryfikacje geometrii narzędzia, powiększając wartość zakładanego kąta β o wartość $\Delta\beta$. Co w konsekwencji powinno spowodować zmniejszenie różnicy między kątem zakładanym a uzyskanym podczas procesu wygniatani trójkątnych nierówności. W celu sprawdzenia postawionego założenia wykonano symulacje dla zakładanych katów β równych: 20°, 18° i 15°, geometria narzędzia została zmodyfikowana, kąt zakładany został powiększony o odpowiednią wartość odczytaną z wykresu. Po weryfikacji geometrii narzędzia przeprowadzono symulacje dla kątów β równych 20°, 18°, 15°. Tabela 2 przedstawia wyniki przeprowadzonej analizy numerycznej, a rysunek 5 przedstawia przykładową mapę naprężeń. Ostatnim etapem było stworzenie obiektu 3D (rys. 6) w programie Solid Works .

Zestawienie wyników							
Zakładany kąt wygniatanej nierówności β [°]	20	18	15				
Uzyskany kąt wygniatanej nierówności β' [°]	19,73	17,73	14,83				
Różnica miedzy zakładanym katem a uzyskanym ∆β [°]	0,27	0,27	0,17				
Zakładana wysokość wygniatanej nierówności H [mm]	0,51	0,49	0,44				
Uzyskana wysokość wygniatanej nierówności H' [mm]	0,47	0,45	0,41				
Różnica miedzy zakładana wysokością a uzyskaną ∆H [mm]	0,04	0,04	0,03				

Tab. 2 wyniki symulacji

Rys. 5 Intensywność naprężeń dla kąta $\beta = 15^{\circ}$

Rys. 6 Rolka do wygniatania trójkątnych nierówności

Prace pokazane na plakatach będą wystawione przez 3 dni /5-7 X 2011r./ na targach WIRTOTECHNOLOGIA, a ich Autorzy zaprezentują szerzej swoje dokonania podczas prezentacji na "X Forum Inżynierskim ProCAx", w dniach 7 i 8 X 2011 r. w hotelu PRESTIGE ul. 11-ego Listopada 17 w Siewierzu.

Najlepsze prace, po recenzji zostaną opublikowane, w formie papierowej, jako typowe artykuły w miesięczniku **Mechanik** nr 1 i 2/2012

